
1

Computable Contracts for Insurance:
Establishing an Insurance-Specific Controlled Natural Language - InsurLE

John Cummins*, Jacinto Dávila**, Robert Kowalski***, David Ovenden****

Abstract

For the most part, insurance contracts are monolithic, text-based documents, written in unstructured natural

language interspersed with technical terms. This means that the many provisions embedded in the contract,

both explicit and implicit, are difficult for both humans and computers to understand and process. Efforts to

make insurance contracts computable have typically resulted in codified representations of contracts that are

separate from the contract wording. This creates the problem of verifying whether or not the contract and the

codified representation of the contract have the same meaning. In this paper we address this problem by

proposing the use of a computable, controlled natural language, InsurLE, which exposes the internal logic of

a contract, while preserving much of the syntactic form of the original wording.

InsurLE is a domain-specific extension of LE (Logical English), which in turn is ‘syntactic sugar’ for the

purely logical subset of the computer language Prolog and other logic programming languages. InsurLE

extends LE by incorporating an insurance-specific ontology, restrictive relative clauses and a representation

of rules and exceptions that mirrors their representation in existing insurance contract wordings. However,

like LE and unlike many existing contract wordings, InsurLE avoids complex syntactic structures, which can

make insurance contracts difficult to understand and process. As a consequence, contracts written in InsurLE

can not only be executed by computer, but can also be easier for laypeople to understand.

Keywords: computable contract, controlled natural language, Prolog, logic programming, commercial

insurance.

* Co-Founder of Axiome Partners Ltd and Senior Honorary Research Fellow at University College London.
** CESIMO, Universidad de Los Andes.
*** Professor Emeritus and Distinguished Research Fellow, Department of Computing, Imperial College
London.
**** Chief Underwriting Officer, AXA Commercial Plc.
The authors thank Axiome Partners Ltd for funding the initial stages of this work. The authors are also
grateful to members of staff of AXA Commercial in the UK for their feedback and advice, to Miguel
Calejo, Preston Carlton, Veronica Dahl and Michael Genesereth for helpful comments on earlier drafts of
this paper, and to the Editors, Miriam Goldby and Franziska Arnold-Dwyer for guiding us through the
refinement of the paper.

2

1. Background and General Introduction

Creating a digital future for the insurance industry has been a strategic imperative for over two decades.

However, despite the progress that has been made, and the digital solutions that have been deployed, this

future has still not been realised. This is because the fundamental requirements for digitalisation have not

been adequately addressed, and until they are, a true digital transformation of the insurance industry will lie

beyond our reach.1

In the non-life context, an insurance policy is essentially a contract in which the insurer promises to

indemnify the policyholder for loss caused by an insured peril (by paying or otherwise compensating for all

or some of the costs associated with the loss). The contract is documented in the policy wording, a

document that can exceed one hundred pages, together with the schedule, which contains the specific

details relating to the policyholder and the risk. At the moment, a small fraction of these details (usually

those in the schedule) are fed, and often re-fed, into a number of platforms and systems across the

insurance value chain in order to ‘digitalise’ the process, while the majority of the contract remains

operationally inert, and stored in the form of a text file with a body of unstructured natural language.

We believe that, rather than continuing to build an industry around a set of largely unstructured,

monolithic, text-based documents, a much better approach is to make insurance contracts ‘computable’, by

exposing their internal structure and logic, and representing contracts as structured ‘digital objects’.

The benefits of making insurance contracts computable in this way include: automated (or at least semi-

automated) claims handling; a more granular portfolio and exposure management;2 improved management

of new and existing products; more efficient contract management (for both new business and renewals);

better communication with customers and brokers; and an overall improvement in customer outcomes.3 4

Computable contracting, understood in this way, represents a fundamental shift of thinking in the insurance

industry, as well as an opportunity to reengineer the foundations upon which the insurance industry is built.

In contrast with the approach advocated in this paper, much of the work undertaken to date to make an

existing contract computable involves creating a separate computer coded representation of the contract,

which does not necessarily reflect the implicit structure and logic of the original contract wording. In short,

the ‘words’ and the ‘code’ are separate objects. A change made to one object requires an equivalent (but

1 J. Cummins, Automating (Re)insurance through Computable Contracting (2020) Version 1.1.
https://axiomepartners.com/wp-content/uploads/2020/08/Automating-Reinsurance-through-Computable-
Contracting.pdf [accessed 14 November 2024].
2 ‘Granular portfolio and exposure management’ concerns establishing a detailed understanding of the
potential losses that could arise from a corpus (e.g. thousands) of contracts.
3 J. Cummins and C. D. Clack, ‘Transforming commercial contracts through computable contracting’
(2022) 6 (1) Journal of Strategic Contracting and Negotiation,
https://doi.org/10.1177/20555636211072560 [accessed 13 November 2024].
4 M. Genesereth, ‘A Cure for Health Insurance “Sludge” ’, Complaw Corner (2021) Codex: The Stanford
Center for Legal Informatics, 2021, online at https://law.stanford.edu/2021/03/31/a-cure-for-health-
insurance-sludge/ [accessed 14 November 2024].

https://axiomepartners.com/wp-content/uploads/2020/08/Automating-Reinsurance-through-Computable-Contracting.pdf
https://axiomepartners.com/wp-content/uploads/2020/08/Automating-Reinsurance-through-Computable-Contracting.pdf
https://doi.org/10.1177/20555636211072560
https://law.stanford.edu/2021/03/31/a-cure-for-health-insurance-sludge/
https://law.stanford.edu/2021/03/31/a-cure-for-health-insurance-sludge/

3

separately implemented) change to the other. Furthermore, this separation of words and code creates the

challenge of verifying that the two objects are semantically equivalent i.e. that they communicate the same

message and that, ultimately, they amount to an identical promise of indemnification.5

In this paper, we address this equivalence challenge by proposing the use of a single language, InsurLE, to

serve both as the wording and as a computable codification of an insurance contract. InsurLE is a new

controlled natural language (CNL), which, like other CNLs,6 7 is designed both to be understandable

without technical training, and also to be directly executable as computable code. Our new CNL builds

upon an existing CNL, Logical English (LE),8 9 10 11 12 which in turn is ‘syntactic sugar’13 for a subset of

the logic programming (LP) language Prolog.14

We argue that the novel approach presented in this paper has the potential both to fulfil the promise of

computable contracts and to do so in a way which respects and complements existing insurance industry

practices. We will support our argument by presenting examples of insurance contract wordings in InsurLE

and by demonstrating how those wordings can be used for such purposes as answering queries about a

contract, given information about a real or imaginary scenario.

Answering a query in InsurLE is performed by first translating a contract and scenario into a logical

representation in Prolog, and then using Prolog or an extended version of Prolog as a logical reasoner to

derive answers as logical consequences of the contract and scenario. The most obvious application of such

reasoning is for use by a claims handler, to help process insurance claims. However, the reasoner could also

5 M. Genesereth, ‘Contract Definition Language, Complaw Corner’ Codex: The Stanford Center for Legal
Informatics, 2021, online https://law.stanford.edu/2021/04/07/contract-definition-language/ [accessed 14
November 2024].
6 F. Idelberger, ‘The uncanny valley of computable contracts: analysis of computable contract formalisms
with a focus towards controlled natural languages’ (2022) Cadmus.eui.eu. online at
https://doi.org/10.2870/638745 [accessed 14 November 2024].
7 T. Kuhn, ‘A Survey and Classification of Controlled Natural Languages’ (2014) 40 (1) Computational
Linguistics, 121 https://doi.org/10.1162/coli_a_00168 [accessed 14 November 2024].
8 R. Kowalski, English as a logic programming language (1990) 8(2) New Generation Computing, 91
https://doi.org/10.1007/bf03037468 [accessed 14 November 2024].
9 R. Kowalski, ‘Logical English’ in Proceedings of Logic and Practice of Programming (LPOP) (2020)
online at https://www.doc.ic.ac.uk/~rak/papers/LPOP.pdf [accessed 14 November 2024].
10 R. Kowalski, J. Dávila and M. Calejo, ‘Logical English for legal applications’ (2021) XAIF, Virtual
Workshop on Explainable AI in Finance online at https://www.doc.ic.ac.uk/~rak/papers/LE_for_LA.pdf
[accessed 14 November 2024].
11 R. Kowalski and A. Datoo, ‘Logical English meets legal English for swaps and derivatives’ (2022) 30
(2) Artificial Intelligence and Law, 163 https://link.springer.com/content/pdf/10.1007/s10506-021-09295-
3.pdf [accessed 14 November 2024].
12 R. Kowalski, J. Dávila, G. Sartor and M. Calejo, ‘Logical English for Law and Education’ in: Warren,
D.S., Dahl, V., Eiter, T., Hermenegildo, M.V., Kowalski, R. and Rossi, F. (eds) Prolog: The Next 50 Years.
Lecture Notes in Computer Science, vol 13900. (Springer, 2023). https://doi.org/10.1007/978-3-031-35254-
6_24 [accessed 14 November 2024].
13 In computer science, ‘syntactic sugar’ is a syntax for symbolic expressions, which hides some of the
symbolism and makes the expressions easier to read and understand.
14 D. S. Warren, V. Dahl, T. Eiter, M. Hermenegildo, R. Kowalski and F. Rossi (eds), Prolog: The Next 50
Years (Springer, 2023).

https://law.stanford.edu/2021/04/07/contract-definition-language/
https://doi.org/10.2870/638745
https://doi.org/10.1162/coli_a_00168
https://doi.org/10.1007/bf03037468
https://www.doc.ic.ac.uk/~rak/papers/LPOP.pdf
https://www.doc.ic.ac.uk/~rak/papers/LE_for_LA.pdf
https://link.springer.com/content/pdf/10.1007/s10506-021-09295-3.pdf
https://link.springer.com/content/pdf/10.1007/s10506-021-09295-3.pdf
https://doi.org/10.1007/978-3-031-35254-6_24
https://doi.org/10.1007/978-3-031-35254-6_24

4

be used by a customer to explore the consequences of selecting different contract options, to help in

tailoring a contract to a user’s needs, although this may have regulatory implications the consideration of

which is outside the scope of this article. Of potentially greater significance for readers of this Journal, the

reasoner could also help the drafter of a contract to explore the logical consequences of different

wordings.15

We developed InsurLE in the context of translating the Public and Products Liability (PPL) wording from

an AXA Commercial product16 into LE, and by showing our initial findings to insurance professionals.

They reported that the LE wordings were too clumsy and too wordy for their needs, and that the

computations were too restrictive. In response to these criticisms, we have extended the syntax of LE, so

that contracts written in InsurLE more closely resemble the style of standard insurance contract wordings.

We also extended the LE computation method, so that it can provide conditional answers to queries, when

the information about a particular case is incomplete. Although these extensions were developed in the

course of our work on the AXA PPL wording, they can also be used both for other insurance contracts and

for human-understandable computable contracts more generally.

In contrast with most other CNLs, InsurLE aims to provide a minimal syntax, which maximises naturalness

and expressive power, but avoids the syntactic complexities and ambiguities of uncontrolled natural

language. For example, in Section 3 we will see that InsurLE does not allow certain syntactic structures

which have been found to inhibit readers’ understanding and recall of legal texts.17

In the main part of this paper, we present the syntax (section 4), semantics (section 5) and computation

methods (section 6) of InsurLE, using examples of insurance contract wordings, including the wording of

the insuring clause and one of its exclusions from the AXA PPL (sections 7 and 8). We will see how

InsureLE builds upon the use of LP rules of the logical form conclusion if conditions, how it includes

expanded LP rules with restrictive relative clauses in the conclusions of LP rules, and how it includes rules

of the form conclusion only if conditions for expressing exceptions to rules. InsurLE also includes an

insurance-specific hierarchy of concepts and associated vocabulary.

But first we survey the relationship of InsurLE to other approaches for making insurance contracts

computable (section 2), and we show informally how coverage, exclusions, exemptions and general

15 The case for using symbolic logic to help with drafting and interpreting legal documents was eloquently
put by Layman Allen in his 1957 paper, L. Allen, ‘Symbolic logic: a razor-edged tool for drafting and
interpreting legal documents’ (1957) 66 Yale Law Journal, 833). The approach to drafting presented in this
paper has similar benefits, with the added advantages that it can be employed without training in symbolic
logic, and it can be exercised by experimenting with executable code.
16 See AXA, ‘Business Combined’ online at https://www.axaconnect.co.uk/commercial-lines/branch-
traded/business-combined/ [accessed 18 December 2024].
17 E. Martínez, F. Mollica and E. Gibson, ‘Poor writing, not specialised concepts, drives processing
difficulty in legal language’ (2022) 224/105070 Cognition https://doi.org/10.1016/j.cognition.2022.105070
[accessed 14 November 2024].

https://www.axaconnect.co.uk/commercial-lines/branch-traded/business-combined/
https://www.axaconnect.co.uk/commercial-lines/branch-traded/business-combined/

5

conditions of insurance contracts are expressed in InsurLE (section 3). We conclude with some directions

for future work (section 9).

When writing this paper, we have attempted to avoid assuming that the reader has had any previous

background in computing or formal logic. Where we may have failed, we hope that the reader will be able

to follow the main thread of the paper, even if the reader may not be able to understand every detail.

2. Making Insurance Contracts Computable – Rationale and Approaches

The InsurLE approach to making insurance contracts computable contrasts with, but is potentially

compatible with three other approaches, which have been developed and used more generally in the field of

computational law.18 19 20 The first approach, modularisation, breaks contracts down into smaller objects

and semantically tags these objects to assist with some aspects of automation e.g. search and selection of

objects, and user-specific configuration. The second approach, codified representation,21 expresses the

implicit logic of a contract wording explicitly as ‘code’ in a computer language (so that the code exists as a

separate object in parallel with the contract). The third approach, large language models (LLMs),

generates answers to user-posed queries about an unstructured natural language text, using machine

learning trained on massive amounts of data.

Contract modularisation involves breaking contract wordings down (or disaggregating them) into a range

of customisable and reusable modular components, thereby facilitating the creation (through

reaggregation), amendment and management of ‘contract objects’ with greater precision and efficiency.

With these objectives in mind, content management and document assembly technologies have been

successfully deployed in the publishing industry and, more relevantly, for the authoring and management of

technical documentation for at least two decades. It is only more recently, however, that these technologies

have started to be deployed in the insurance industry, although current deployments tend to be of a

proprietary nature and are not based upon open standards. Arguably, further advancement in the

modularisation of contracts in commercial insurance will be achieved through the adoption of more open

data standards (such as semantic web technologies).22 23 Indeed, the markup language XML and several of

its extensions have been used to describe legal texts. In particular, the markup language LegalRuleML has

18 B. Chau and M. Livermore, ‘Computational Legal Studies Comes of Age’ (2024) 1(1) European Journal
of Empirical Legal Studies, 89 https://doi.org/10.62355/ejels.19684 [accessed 14 November 2024].
19 T. Hvitved, ‘Contract Formalisation and Modular Implementation of Domain-specific Languages’ (PhD
thesis, University of Copenhagen 2011), (2012) https://di.ku.dk/english/research/phd/phd-
theses/2011/hvitved12phd.pdf [accessed 14 November 2024].
20 S. Yuill, ‘Section Editorial: Critical Approaches to Computational Law’ (2019) Computational Culture 7
online at http://computationalculture.net/section-editorial-critical-approaches-to-computational-law/
[accessed 14 November 2024].
21 H. Surden, ‘Computable Contracts’ (2012) 46/629 UC Davis Law Review 629, online at
https://ssrn.com/abstract=2216866 [accessed 14 November 2024].
22 Cummins (n 1).
23 Cummins and Clack (n 3).

https://doi.org/10.62355/ejels.19684
https://di.ku.dk/english/research/phd/phd-theses/2011/hvitved12phd.pdf
https://di.ku.dk/english/research/phd/phd-theses/2011/hvitved12phd.pdf
http://computationalculture.net/section-editorial-critical-approaches-to-computational-law/
https://ssrn.com/abstract=2216866

6

been developed for this purpose by the information technology standards consortium OASIS (www.oasis-

open.org).24

InsurLE is compatible with, and can benefit from such modularisation approaches, because modularisation

provides a higher-level structure within which InsurLE codings can be embedded.

Codified representations express the implicit logic of a contract wording explicitly as ‘code’ in a general-

purpose programming language, such as Python or Prolog, or in a domain-specific computer language,

such as Solidity, Lexon25 or L4.26 One of the first large-scale applications of this approach was the

implementation of a large portion of the British Nationality Act in Prolog.27 According to a review of the

field of Logic and Law,28 this work was "hugely influential for the development of computational

representations of legislation, showing how logic programming enables intuitively appealing

representations that can be directly deployed to generate automatic inferences". More recently, the

application of LP to law has become a major contributor to the development of ‘Rules as Code’,29 which is

a code-first approach to drafting legal rules. The application of LP to the computational representation of

insurance contracts has more recently been further advanced by the Codex Insurance Initiative at Stanford

University.30 31 32 33

A related, but logically distinct approach, in the area of smart contracts, involves the coding of reactive

rules of the form if X then do Y, which generate actions Y in response to external events X.34

24 T. Athan, G. Governatori, M. Palmirani, A. Paschke and A. Wyner, ‘LegalRuleML: Design principles
and foundations’ (Reasoning Web. Web Logic Rules: 11th International Summer School 2015, Berlin,
Germany, Tutorial Lectures 11, 151 31st July – 4th August 2015).
25 H. Diedrich, Lexon Bible: hitchhiker’s guide to digital contracts (3rd edn. Wildfire Publishing, London
UK, 2020).
26 G. Governatori and M. Wong, ‘Defeasible semantics for L4’ (POPL ProLaLa 2023. Centre for
Computational Law Springer, 2023) https://ink.library.smu.edu.sg/cclaw/5 [accessed 14 November 2024].
27 M. Sergot, F. Sadri, R. Kowalski, F. Kriwaczek, P. S. Hammond and H. T. Cory, ‘The British
Nationality Act as a logic program’ (1986) 29(5) Communications of The ACM, 370
https://doi.org/10.1145/5689.5920 [accessed 14 November 2024].
28 H. Prakken and G. Sartor, ‘Law and logic: A review from an argumentation perspective’ (2015) 227
Artificial Intelligence 214 https://doi.org/10.1016/j.artint.2015.06.005 [accessed 14 November 2024].
29 M. Waddington, ‘Rules As Code: Drawing Out the Logic of Legislation for Drafters and Computers’
(2022) SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4299375 [accessed 14 November 2024].
30 Genesereth (n 4).
31 Genesereth (n 5).
32 P. Carlson and M. Genesereth, ‘Insurance Portfolio Analysis as Containment Testing’ (2023) Frontiers
in artificial intelligence and applications https://doi.org/10.3233/faia230957 [accessed 14 November 2024].
33 O. R. Goodenough and P. J. Carlson, ‘Words or code first? Is the legacy document or a code statement
the better starting point for complexity-reducing legal automation?’ (2024) 382/2270 Philosophical
Transactions - Royal Society. Mathematical, Physical and Engineering Sciences
https://doi.org/10.1098/rsta.2023.0160 [accessed 14 November 2024].
34 M. Goldby, C. Reed, M. MacDonald, K. Richards and L. Stanbrough, Triggering Innovation: How
Smart Contracts Bring Policies to Life (Lloyd’s, 2019) online at https://assets.lloyds.com/assets/pdf-
triggering-innovation-how-smart-contracts-bring-policies-to-life/1/pdf-triggering-innovation-how-smart-
contracts-bring-policies-to-life.pdf [accessed 14 November 2024].

http://www.oasis-open.org/
http://www.oasis-open.org/
https://ink.library.smu.edu.sg/cclaw/5
https://doi.org/10.1145/5689.5920
https://doi.org/10.1016/j.artint.2015.06.005
https://doi.org/10.2139/ssrn.4299375
https://doi.org/10.3233/faia230957
https://doi.org/10.1098/rsta.2023.0160
https://assets.lloyds.com/assets/pdf-triggering-innovation-how-smart-contracts-bring-policies-to-life/1/pdf-triggering-innovation-how-smart-contracts-bring-policies-to-life.pdf
https://assets.lloyds.com/assets/pdf-triggering-innovation-how-smart-contracts-bring-policies-to-life/1/pdf-triggering-innovation-how-smart-contracts-bring-policies-to-life.pdf
https://assets.lloyds.com/assets/pdf-triggering-innovation-how-smart-contracts-bring-policies-to-life/1/pdf-triggering-innovation-how-smart-contracts-bring-policies-to-life.pdf

7

Although many of these codified representations have been written in logic programming languages, such

as Prolog, they can often be translated into natural language, because of the close relationship between the

logic which underpins LP and the logic of natural language. Moreover, the implementation of InsurLE

translates wordings written in InsurLE into Prolog code which is very close to hand-coded Prolog

representations. There are also variants of LE which include language features for expressing reactive rules

in smart contracts.35

Large language models (LLMs), in contrast with the other approaches above, do not expose the modular

or logical structure of a document. However, they do provide the ability for a user to input a query about an

unstructured legal text, and to obtain an output, which may be an answer to the query.36 Unfortunately, such

answers are often incorrect, and even when the answers are correct, such systems generally cannot provide

trustworthy explanations for their answers.37

Despite these current limitations, LLMs are improving at a rapid rate, especially in combination with

Prolog38 and are likely to provide increasingly more useful applications for computable contracts in the

future. In particular, they are likely to prove useful for helping to translate existing natural language

documents and queries into more structured, codified representations, including those written in InsurLE.

In summary, InsurLE combines the natural language expression of contracts of natural language processing

systems with the logical and computational capabilities of codified representations. Moreover, it is

compatible with the use of modularisation techniques, to provide a more highly structured representation of

insurance contracts and of legal texts more generally.

35 Kowalski (n 9).
36 T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G.
Sastry, A Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S.
McCandlish, A. Radford, I. Sutskever and D. Amodei, ‘Language models are few-shot learners’ in H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (eds), Advances in Neural Information
Processing of the Thirty-Second AAAI Conference on Artificial Systems, volume 33, (Curran Associates,
Inc. 1877, 2020) online at
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf [accessed
14 November 2024].
37 G. Hill, M. Waddington and L Qiu, ‘From pen to algorithm: optimizing legislation for the future with
artificial intelligence’ (2024) AI & Soc https://doi.org/10.1007/s00146-024-02062-3 [accessed 14
November 2024].
38 S. Shchegrikovich, ‘Use Prolog to improve LLM’s reasoning’ (2024) online at
 https://shchegrikovich.substack.com/p/use-prolog-to-improve-llms-reasoning [accessed 17 November
2024].

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1007/s00146-024-02062-3
https://shchegrikovich.substack.com/p/use-prolog-to-improve-llms-reasoning

8

3. Introduction to the Nature and Structure of Insurance Contracts

Before introducing InsurLE in detail in later sections of this paper, we first present in this section a preview

of InsurLE in the context of its application to the different kinds of clauses found in insurance contracts.

In the non-life context, an insurance contract represents two promises: (1) a promise made by an insurer to

the insured (or policyholder) to indemnify the loss incurred by the insured in the event of an insured peril,

and (2) a promise by the insured to pay a premium. Insurance policies often express this indemnification of

a loss (which can be of different kinds, as specified by the policy) as the provision of coverage for ‘costs in

respect of the loss’ to signal that the policy pays financial compensation, and only in exceptional and

expressly noted circumstances provides for replacement or reinstatement of property. The insured’s costs

may include the value of insured property (in first party insurance) and the amount of damages associated

with a claim, the legal representation costs for appealing against the legal liability for a damage, and other

‘claims costs’ (in third party or liability insurance).

At the heart of an insurance contract lies the insuring clause, which describes the core coverage offered to

the insured. Here is a simplified example:

we will cover any cost

which is in respect of any damage

which is caused by a storm

if the storm occurs during the period of insurance.

The scope of coverage expressed by the insuring clause is often extended with coverage extensions, which

are additional clauses in the contract, such as:

 we will cover any cost

which is in respect of any damage

which is caused by a burst pipe

if the burst pipe occurs during the period of insurance.

These coverage extensions may be offered as standard, or as options, in which case their selection may

result in an increase in the premium.

Most insurance contracts also contain exclusions, which specify losses or costs of losses that are not

covered by the contract. These exclusions can also be understood as exceptions to coverages. For example:

we will not cover any cost

which is in respect of any damage

which is caused by wear and tear or negligence.

Exclusions may also contain exemptions. These exemptions can be understood as coverages that are

excluded at first, but then reinstated (also known as ‘writebacks’). Exemptions can also be understood as

exceptions to exclusions. For example:

9

 we will not cover any cost

which is in respect of any damage

 which is caused by a loss of electricity

 which occurs during a storm

 unless the loss of electricity lasts for more than an hour.

The combination of an exclusion and an exemption is often stated in an alternative form, which gives

emphasis to the exemption (as a coverage), rather than to the exclusion:

we will cover any cost

which is in respect of any damage

 which is caused by a loss of electricity

 which occurs during a storm

 only if the loss of electricity lasts for more than an hour.

Coverages expressed by the insuring clause or coverage extension clauses are normally subject to general

conditions. Breach of or non-compliance with any of these conditions entitles the insurer to decline liability

for a claim (unless it can be shown that a breach had already been remedied at the time of the loss or the

‘non-compliance could not have increased the risk of the loss which actually occurred’).39

General conditions have the same logical effect as exclusions. For example, the general condition that all

electrical work must be certified to be safe can be expressed as an exclusion, i.e. as a non-coverage

statement:

 we will not cover any cost

 if you have any electrical work carried out on the insured property

 and it is not the case that

 the electrical work is certified to be safe.

All of the example clauses above are expressed in the syntax of InsureLE.40 In particular, they illustrate one

of the most distinguishing features of InsurLE, namely the use of restrictive relative clauses, signalled by

the relative pronoun ‘which’.41

39 Insurance Act 2015, ss10 and 11.
40 In many insurance contracts it is common to express general conditions as obligations, using a modal
auxiliary verb such as ‘must’. For example, the general condition above might be expressed as ‘If you have
any electrical work carried out on the insured property, then the electrical work must be certified safe’.
Instead of expressing obligations in such modal terms, InsurLE expresses them in terms of the
consequences of their violation. In the case of insurance contracts, violation of a general condition implies
that the associated claim is not covered.
41 Note that InsurLE syntax follows the British practice of using ‘which’ as a restrictive relative pronoun, in
contrast with the American use of ‘that’.

10

InsurLE limits relative clauses to restrictive clauses, and excludes non-restrictive clauses. Restrictive

relative clauses logically add extra conditions to a rule, whereas non-restrictive relative clauses logically

add extra conclusions to the rule. For example, the following sentence has two restrictive relative clauses:

 we will not cover any cost

which is in respect of any damage

which is caused by wear and tear or negligence.

The sentence is logically equivalent to a sentence with two conjoint conditions:

 we will not cover any cost

if the cost is in respect of any damage

and the damage is caused by wear and tear or negligence.

In contrast, the following sentence has one non-restrictive relative clause:

we will cover a cost, which we will reimburse within one month of receiving a claim for the cost,

if you are legally liable to pay the cost

The sentence is logically equivalent to a sentence with two conclusions42:

 we will cover a cost

and we will reimburse the cost within one month of receiving a claim for the cost

 if you are legally liable to pay the cost.

InsurLE not only excludes such non-restrictive relative clauses, but it also excludes restrictive relative

clauses which are embedded inside other clauses. For example, the following sentence has an embedded

restrictive relative clause ‘which is with respect to a loss which occurs during the period of insurance':

a cost which is in respect of a loss which occurs during the period of insurance

occurs during the period of insurance

The sentence is logically equivalent to a sentence with the embedded clause written as a condition:

a cost occurs during the period of insurance

if the cost is in respect of a loss which occurs during the period of insurance.

These two exclusions (non-restrictive relative clauses and embedded restrictive relative clauses) eliminate

from InsurLE the feature of centre-embedding, which has been shown to cause the greatest difficulty for

42 To be more precise, the non-restrictive relative clause adds both an extra conclusion and an extra
condition to the sentence. Stated as a separate sentence, it can be written in the form: ‘we will reimburse a
cost within one month of a date if we receive a claim for the cost at the date and you are legally liable to
pay the claim’.

11

reading comprehension in legal language.43 They make InsurLE not only easier for computers to process,

but in many cases they make InsurLE easier for lay people to read and understand.

At a higher level, the relationships between the different kinds of insurance clauses and their effect on the

coverage provided can be understood in visual terms. as shown in Figure 1. Here the white and grey areas

indicate coverage and non-coverage respectively.

Figure 1. Visual representation of coverage offered by an insurance contract

At a still higher level, a typical insurance contract comprises two main objects: the schedule, which serves

as a summary of the coverage offered, and the wording, which describes the coverage offered in detail. The

main objectives and the forms of these objects are shown in Figure 2.

Figure 2. The two principal insurance contract objects: the schedule and the wording.44

43 Martínez et al. (n 17) 6.
44 XML (Extensible Markup Language) and JSON (Javascript Object Notation) are computer languages
that are used for the structuring, attribution and transfer of data.

12

The contract wording specifies the coverages offered to the insured together with any conditions,

exclusions and exemptions. In essence, it is an expression of an insurance product using unstructured (but

domain-specific) natural language, and can be over a hundred pages in length. Moreover, the wording is a

fixed, singular object that is made available to customers in PDF format.

The contract schedule allows for the wording to be ‘externally’ customised to satisfy the specific

requirements of customers. As indicated in Figure 2 above, the schedule confirms the broad area of

coverage e.g. residential property, public liability, or professional indemnity. It also specifies the options

selected from the optional coverage extensions specified in the wording and the limits of indemnity (the

maximum amount payable under the contract) and sub-limits that apply to more specific areas of coverage

(or individual coverages).

Endorsements are used to make changes to (or override) the wording. It is not uncommon for there to be

several pages of endorsements, sometimes reaching a length similar to that of the wording itself. The data

contained in the schedule are in a structured format (together with unique identifiers for the endorsements)

and are stored on a PAS (Policy Administration System). We have not considered the treatment of

endorsements in this paper.

For the work undertaken to develop InsurLE as an insurance-specific, controlled natural language, we have

redrafted the wording of the ‘Public and Product Liability’ (PPL) Section,45 which is part of an AXA

Commercial general liability product. The PPL Section wording has the following four main sub-sections:

1. A subsection listing all of the defined terms. This subsection specifies (and thereby) standardises

the meaning of the defined terms used throughout the contractual documentation.

2. A coverage subsection that comprises the insuring clause (a statement of the core coverage

offered) and both standard and optional extensions. This subsection also describes the limits of

liability in more detail.

3. A general exclusion subsection that details what is not covered.

4. A general conditions subsection that details the conditions that must be adhered to by the insured

for the promise of indemnification to be upheld by the insurer.

The InsurLE redrafting to the PPL codifies all of these sections, except for the section on defined terms,

which is used to standardise the vocabulary of the codification.

45 AXA (n 16).

13

4. A Brief Introduction to the Syntax of InsurLE

The main purpose of this section is to indicate the range of sentences that can be written in InsurLE, and to

provide some guidance about the syntax of InsurLE for potential writers of InsurLE documents. Such

guidance is not necessary for readers of InsurLE, because reading InsurLE requires no special training.

InsureLE is a restricted, unambiguous form of English. The lack of ambiguity ensures that all sentences

expressed in InsurLE can be translated into unique logical representations, which enable trustworthy,

logical reasoning.

All sentences in InsurLE are declarative or interrogative. Declarative sentences are used to represent both

the wording of a contract and the data relevant to applying the contract in a particular use case or scenario.

Interrogative sentences are used to pose a query or goal to the contract, given a scenario. InsurLE has no

imperative or exclamatory sentences.

Declarative sentences are either facts, which represent a property of an individual (or entity) or a

relationship among individuals (or entities), or rules, which consist of a conclusion and conditions. The

components of a rule have the same syntactic form as facts, except they may contain variables, which stand

for classes (or types) of individuals. Rules are used to represent the wordings of contracts, whereas facts are

used to represent use cases or scenarios.

Facts are simple sentences about individuals which exist in the universe of discourse of some real or

imaginary world. An individual in the universe of discourse can be a physical object, such as Bob’s broken

thumb, a conceptual object such as the specific insurance claim called claim 001, or a class of objects

regarded as a single individual in its own right, like the class of all broken thumbs or the class of all bodily

damages.

Facts can be true or false, depending on whether or not the properties or relationships which they assert are

true in the world. For example, the following simple sentences are ‘facts’:

 Bob’s broken thumb is a bodily injury.

 You are legally liable to pay claim 001.

claim 001 is a cost.

claim 001 is in respect of Bob’s broken thumb.

Whether or not they are true facts depends on the world in the use case or scenario under consideration. In

a typical insurance application, these facts would be given as input, and they might represent either a true

fact, a hypothetical fact, a human judgement or even a counterfactual.

Here, ‘Bob’s broken thumb’, ‘bodily injury’, ‘you’, ‘claim 001’ and ‘cost’ are noun phrases which name

individuals in the universe of discourse. In formal logic such names of individuals are called constants, and

14

they are regarded as not having any meaningful internal structure. In symbolic logic, to assist this

understanding of constants, they are normally represented by symbols, such as a, a1, a2, b, ... etc.46

An individual has a unique name, which is always written in the same way. The distinction between upper

and lower case letters has no significance. To safeguard against possible ambiguity, in the current version

of InsurLE, the pronouns ‘he’, ‘she’, ‘they’ and ‘it’ are not allowed to substitute for the names of

previously mentioned individuals.

Here, the phrases ‘is a’, ‘are legally liable to pay’, ‘is an’ and ‘is in respect of’ name relations between

individuals. In formal logic, such names of properties and relations are called predicates. Like constants,

predicates are also regarded as not having any meaningful internal structure. Properties and relations also

have unique names, which are written in the same way, wherever they occur, except for ‘is a’ and ‘is an’,

which name the same relation, and which vary only to conform with ordinary English grammar.

To some extent, the distinction between predicates and constants is somewhat arbitrary. For example, the

fact ’Bob’s broken thumb is a bodily injury’ could be understood either as expressing a property of Bob’s

broken thumb, or it could be understood as expressing a relationship between Bob’ broken thumb and the

class of bodily injuries. A writer of InsurLE (and of any computable, logical language) needs to make a

choice between such alternative conceptualisations. In this case, the choice is made by means of the built-in

‘is a’ predicate in InsurLE. The choice can be visualised by means of a template:

 _ is a _

where the underscore ‘_’ indicates a slot that can be filled in either by a constant or by a variable. The

choice to treat ‘is a’ as the name of a relation contrasts with the alternative choice of treating ‘is a’ as part

of the name of a property. The alternative choice is less useful, because it would require many such

templates for many similar properties, such as:

_ is a bodily injury

_ is a cost

_ is a loss,

etc.

There are three kinds of rules: (i) if-rules, (ii) expanded if-rules, which contain restrictive relative clauses,

and (iii) only-if-rules.

(i) If-rules have the form conclusion if conditions, where conclusion is a simple sentence possibly

containing variables, and conditions is a logical combination of simple sentences (using the logical

connectives and, or and it is not the case that. For example:

46 In addition to constants, Prolog also includes compound names with internal structure. For example, ‘the
king of France’ is a compound name, which is an instance of the noun phrase ‘the king of a country’. Noun
phrases representing compound terms are not included in the current version of InsurLE.

15

we will cover a cost

if the cost is in respect of a damage

and the damage is caused by a burst pipe

and it is not the case that

 the damage is caused by wear and tear or negligence.

Here ‘a cost’, ‘a damage’ and ‘a burst pipe’ are variables; ‘the cost’ is the same variable as ‘a cost’ and ‘the

damage’ is the same variable as ‘a damage’. In general, the first occurrence of a variable in a sentence is

introduced by one of the determiners ‘a’, ‘an’ or ‘any’. Later occurrences of the same variable in the same

sentence are represented by the same string of words, but with the determiner ‘a’, ‘an’ or ‘any' replaced by

the determiner ‘the’.

A sentence containing variables is shorthand for all the sentences obtained by replacing (or ‘instantiating’)

variables by constants. For example, the sentence above stands for such instances as:

 we will cover claim 001

if claim 001 is in respect of my ruined kitchen worktop

and my ruined kitchen worktop is caused by burst pipe event 001

and it is not the case that

 my ruined kitchen worktop is caused by wear and tear or negligence.47

Here, the constant ‘claim 001’ replaces all occurrences of the variable ‘a cost’, ‘my ruined kitchen

worktop’ replaces all occurrences of ‘a damage’ and ‘burst pipe event 001’ replaces the single occurrence

of ‘a burst pipe’. The constant ‘wear and tear or negligence’ is to be understood as an unstructured

constant, in which the words ‘and’ and ‘or’ are not to be understood as logical connectives.

Typed Variables. If-rules in InsurLE are identical to if-rules in LE, except that variables in InsurLE are

typed. The types of variables in InsurLE are used to restrict the constants which can meaningfully

instantiate the variables. For example, they disallow such syntactically correct, but meaningless instances

of the rule above as:

we will cover jungle book

if jungle book is in respect of Rudyard Kipling

and Rudyard Kipling is caused by snow

and it is not the case that

 Rudyard Kipling is caused by wear and tear or negligence.

Here the constant ‘jungle book’ replaces all occurrences of the variable ‘a cost’, ‘Rudyard Kipling’ replaces

all occurrences of ‘a damage’ and ‘snow’ replaces the single occurrence of ‘a burst pipe’. These

47 If my ruined kitchen worktop is caused both by the burst pipe event 001 and by wear and tear or
negligence, and if these two causes are represented by the corresponding facts in the input scenario, then it
logically follows that it is not the case that we will cover claim 001.

16

instantiations of variables do not respect the intended interpretation of the types of the variables, assuming

that it is not the case that ‘jungle book is a cost’, ‘Rudyard Kipling is a damage’ and ‘snow is a burst pipe’.

In general, a typed variable in InsurLE is a noun phrase whose first word is one of the determiners ‘a’, ‘an’,

‘any’ or ‘the’.48 The remainder of the noun phrase is the type of the variable. For example, ‘cost’ is the type

of the variable ‘a cost’ and ‘burst pipe’ is the type of the variable ‘a burst pipe’.

Types in InsurLE impose a hierarchical structure on the universe of discourse. In this hierarchy, concrete

objects are situated at the bottom of the hierarchy, and abstract classes appear at higher levels, with

subclasses occurring directly below their parent class. This hierarchy of objects and classes can be viewed

as part of a domain-specific ontology for insurance contracts49.

The syntax of InsurLE uses the types of variables to represent this hierarchy of objects and classes, and to

restrict the constants which can validly instantiate variables. So, for example, given the facts:

 my ruined kitchen worktop is a property damage.

 property damage is a damage.

the constant ‘my ruined kitchen worktop’ is a valid instance of the variable ‘a damage’. This is because the

conclusion ‘my ruined kitchen worktop is a damage’ follows logically from the given facts, together with

the built-in untyped rule:

 X is a Y if X is a Z and Z is a Y.

Typed variables are implemented in InsurLE by replacing all occurrences of a typed variable in a rule by an

untyped variable and by adding an extra condition to the rule expressing that the untyped variable is an

instance of the type. So, for example, the InsurLE rule with typed variables:

 we will cover a cost

if the cost is in respect of a damage

and the damage is caused by a burst pipe

is rewritten in the implementation of InsurLE as the untyped LE rule:

we will cover a X

if X is a cost

and X is in respect of a Y

and Y is a damage

and Y is caused by a Z

48 However, if a noun phrase beginning with one of the determiners ‘a’ or ‘an’ is preceded by the word ‘is’,
then the noun phrase does not represent a variable. Instead, the determiner is part of the ‘is a’ or ‘is an’
predicate. For example, ‘a cost’ is a variable in ‘we will cover a cost’, but ‘a cost’ is not a variable in ‘claim
001 is a cost’.
49 An ontology is a set of concepts, properties and relationships in a subject area or domain underpinning
the vocabulary of a language for that domain.

17

and Z is a burst pipe.

Here X, Y and Z are untyped variables, which can be instantiated by arbitrary constants without any

restrictions. The intended type restrictions are imposed by the conditions ‘X is a cost’, ‘ Y is a damage’ and

‘Z is a burst pipe’.

(ii) Expanded if-rules in InsurLE provide the option of incorporating selected conditions of an if-rule into

the conclusion of the rule as restrictive relative clauses. This expansion of the conclusions of rules by

means of restrictive relative clauses helps to make the rules more informative, and helps to make them to

more closely resemble typical insurance writing style. For example, the if-rule above can be written as the

expanded if-rule:

we will cover a cost

which is in respect of a damage

which is caused by a burst pipe

if it is not the case that

 the damage is caused by wear and tear or negligence.

In general, a restrictive relative clause in an expanded if-rule is a simple, fact-like sentence containing a

variable, with the relative pronoun ‘which’ replacing the variable and positioned at the front of the

sentence.

Logically, restrictive relative clauses have the same meaning as conditions of rules. In fact, the

implementation of InsurLE, in effect, translates restrictive relative clauses into conditions. For example, the

expanded rule:

we will cover a cost

which you are legally liable to pay.

has the same meaning as the rule:

 we will cover a cost

if you are legally liable to pay the cost.

Here, the condition of the rule has been written as a restrictive relative clause, by deleting the variable ‘the

cost’ from the end of the condition, and adding ‘which’ at the beginning.

The relative pronoun ‘which’ at the beginning of a restrictive relative clause in an expanded if-rule refers to

the variable that immediately precedes the pronoun. So that ‘which’ in ‘we will cover a cost which you are

legally liable to pay’ refers to the variable ‘a cost’ which immediately precedes ‘which’. This constraint,

that a relative pronoun always refers to the variable that immediately precedes it, eliminates any potential

ambiguity about the referent of the pronoun, and it helps to ensure that relative clauses in InsurLE are

understood in the same way both by humans and by computers.

(iii) Only-if rules have the same syntax as expanded if-rules, but with if replaced by only if. For example:

18

 we will cover a cost

which is in respect of a damage

only if it is not the case that

 the damage is caused by wear and tear or negligence.

Logically, this has the same meaning as the sentence:

 it is not the case that we will cover a cost

which is in respect of a damage

if the damage is caused by wear and tear or negligence.

The implementation of InsurLE uses this equivalence of meaning to translate only-if rules into ordinary if-

rules in LE. However, to facilitate the representation of rules and exceptions, it replaces the negative

conclusion ‘it is not the case that we will cover a cost’ by a positive, but contrary conclusion50 ‘we will not

cover a cost’.

Rules and Exceptions in InsureLE. In LE, a rule which admits an exception is written with a negative

condition, which anticipates and excludes the exception. For example, the negative condition in the

following rule excludes costs of damages caused by wear and tear or negligence:

we will cover a cost

which is in respect of a damage

which is caused by a burst pipe

if it is not the case that

the damage is caused by wear and tear or negligence.

However, when there are possibly several exceptions to a general rule, it is better to write the negative

condition in a more general form, so that the rule as a whole has the general form a conclusion holds if

certain conditions hold and it is not the case that the contrary of the conclusion holds. For example, if the

rule above has two exceptions, one for damage caused by wear and tear or negligence, as above, and one

for the cost of the damage exceeding the limit of indemnity, then it is better to write the rule and its

exceptions in the more general form:

we will cover a cost

which is in respect of a damage

which is caused by a burst pipe,

if it is not the case that

we will not cover the cost.

50 In the same way that ‘bad’ is the positive contrary of ‘good’, ‘guilty’ is the positive contrary of
‘innocent’ and ‘uncool’ is the positive contrary of ‘cool’, the predicate ‘we will not cover’ is the positive
contrary of the predicate ‘we will cover’. In particular, the word ‘not’ in ‘we will not cover’ is not treated
as a logical operation, in the same sense that ‘un’ is not a logical operation in ‘uncool’.

19

we will not cover a cost

which is in respect of a damage

if the damage is caused by wear and tear or negligence.

we will not cover a cost

if the cost exceeds the limit of indemnity.

The inclusion in LE of an explicit negative condition, to exclude possible exceptions, clarifies the logical

relationship between a general rule and its exceptions. However, in ordinary natural language, it is common

to omit such negative conditions, and to take for granted that a general rule can implicitly have exceptions

which override the general rule. So, instead of stating a rule in the form a conclusion holds if certain

conditions hold and it is not the case that the contrary of the conclusion holds it is more common to omit

the negative condition, and to state the rule in the simpler form a conclusion holds if certain conditions

hold. But, in such a case, when there are potentially conflicting rules of the simplified form a conclusion

holds if certain conditions hold and the contrary conclusion holds if certain other conditions hold, it is

important to indicate which sentence states the general rule and which sentence states an exception. In

ordinary English, it is common to make this indication, simply by writing the exceptions after the general

rule. For example, a conclusion holds if certain conditions hold. The contrary conclusion holds if certain

other conditions hold.

InsurLE follows the writing practice of ordinary natural language in the insurance industry by omitting

explicit reference to possible exceptions in the coverage rules themselves, with the convention that the

relevant exceptions are expressed separately in non-coverage rules, which typically are written after the

coverage rules. So, for example, the coverage rule for damage caused by a burst pipe can be written in

InsurLE in the simplified, form:

we will cover a cost

which is in respect of a damage

which is caused by a burst pipe.

InsurLE implements reasoning with such simplified rules and exceptions by adding explicit negative

conditions of the form it is not the case that the contrary of the conclusion holds to the general rules,

without adding corresponding negative conditions to the exceptions.

Interrogative sentences, also called queries, in InsurLE have the same syntax as the conditions of rules,

except that variables which have only a single occurrence in the query can optionally be replaced by the

interrogative pronoun ‘which’. For example:

 we will cover which cost?

 which cost is in respect of which damage?

20

 which cost is in respect of a damage which is caused by a burst pipe?

Here in the first two queries, all occurrences of ‘which’ are interrogative pronouns. But in the third query,

the first occurrence of ‘which’ is an interrogative pronoun; the second occurrence is a restrictive relative

pronoun.

5. The Semantics of InsurLE

The meaning of a set of declarative sentences in InsureLE is identical to the meaning obtained by

translating the sentences into LE, and by interpreting the resulting LE sentences as a logic program:

● The translation rewrites an InsurLE rule of the form we will cover a cost if certain conditions hold

as an LE rule of the form we will cover a cost if certain conditions hold and it is not the case that

we will not cover the cost.

● It rewrites an only-if-rule of the form we will cover a cost only if certain conditions hold as an LE

rule of the form we will not cover a cost if it is not the case that certain conditions hold.

● It rewrites a restrictive relative clause in a rule as a condition of the rule.

● It rewrites a typed variable in a rule as an untyped variable, and it adds an extra condition to the

rule restricting the untyped variable to its type. It uses the built-in rule X is a Y if X is a Z and Z is

a Y behind the scenes, to evaluate whether or not the extra condition holds.

An example of this rewriting is illustrated in Figure 3.

Figure 3. An insuring clause in InsurLE and its representation in LE.

Clearly, the LE representation in Figure 3 is much more cumbersome than the InsurLE representation. The

LE representation translates the typed variables ‘any cost’, ‘any damage’ and ‘a storm’ in InsurLE into

meaningless symbolic variables X, Y and Z, and it associates the variables with their appropriate types by

means of ‘is a’ conditions.

21

However, the advantage of the LE representation is the simplicity of its semantics, which is based on the

semantics of classical predicate logic, but employs a database51 restriction on the possible interpretations of

sentences. It restricts attention to interpretations in which:

1. The only individuals are ones that have names in the language of the logic program.

2. Every individual has a unique name, in the sense that different names refer to different

individuals.

3. The only facts that are true in the interpretation are the facts that are known to be true given the

facts and rules in the program.

The first two restrictions, in effect, eliminate the distinction between individuals and their names. The third

restriction52 eliminates the distinction between the facts that are true in the world and the facts that can be

derived from the program. Taken together, the three restrictions view a logic program as defining all the

facts that are true in the world, and these facts are said to be the intended interpretation of the program.

Given a logic program, written in a language with a fixed vocabulary of constants and predicates:53

● A fact is true in the intended interpretation of the program

if the fact is a fact in the logic program

or the fact is the conclusion of a variable-free instance of a rule in the program

 and the conditions of the variable-free instance of the rule are true

 in the intended interpretation of the program.

● No other facts are true in the intended interpretation of the program.

Complications can arise with this definition if the truth of a fact which is an instance of the conclusion of a

rule depends on the negation of the truth of the same fact either directly in the same instance of the rule, or

indirectly in other instances of the rules. Programs which do not suffer from this complication are said to be

51 S. Russell and P. Norvig, Artificial intelligence: A Modern approach (4th ed. Prentice Hall, 2021).
52 This restriction is sometimes called the ‘closed-world assumption’: R. Reiter, ‘On closed world
databases’ in B. L. Webber and N. J. Nilsson (eds), Readings in artificial intelligence, (Morgan Kaufmann,
2021), 119. The closed world assumption can also be understood as interpreting a set of if-rules with the
same conclusion but with alternative conditions as a definition that the conclusion holds if and only if one
of the alternative conditions holds. K. L. Clark, ‘Negation as Failure’ in: Gallaire, H., Minker, J. (eds)
Logic and Databases (Springer, Boston, MA, 1978), https://doi.org/10.1007/978-1-4684-3384-5_11
[accessed 14 November 2024]).
53 Notice that this definition of the semantics of LP is itself written informally in LP form, using LP as a
meta-language to define the semantics of LP. The last sentence expresses the closed world assumption.
This use of LP as a meta-language also underpins the use of Prolog to implement meta-reasoners, which
define the reasoning strategies of other reasoners.

https://doi.org/10.1007/978-1-4684-3384-5_11

22

stratified54 and for such stratified programs, the definition above specifies a single intended interpretation,

which encapsulates the meaning of the program. Fortunately, the logic programs that result from rewriting

a set of facts and rules in InsurLE are always stratified, thanks in part to the way in which coverage

depends upon noncoverage for possible exceptions, but noncoverage does not depend upon coverage.

Given any stratified logic program, an answer to a query is any instance of the query which is true in the

intended interpretation of the program. Consider, for example, the InsurLE rules and the corresponding LE

rules (with stratified negation) in Figure 4.

Figure 4. Rules with typed variables in InsurLE and the corresponding rules in LE.

Consider the following scenario:

claim 1 is in respect of destroyed living room carpet.

claim 2 is in respect of warped and water-stained wooden kitchen worktop.

 destroyed living room carpet is caused by burst pipe event 001.

 warped and water-stained wooden kitchen worktop is caused by wear and tear or negligence.

 claim 1 is a cost.

 claim 2 is a cost.

 destroyed living room carpet is a damage.

 warped and water-stained wooden kitchen worktop is a damage.

 burst pipe event 001 is a burst pipe.

Given the scenario and the two rules in Figure 4, the intended interpretation assigns truth to all the facts in

the scenario and to the two additional facts:

54 K.R. Apt, H.A. Blair and A. Walker, Towards a Theory of Declarative Knowledge (1988) In
Foundations of Deductive Databases and Logic Programming, Minker, J., ed. Morgan Kaufmann
Publishers Inc., 89.

23

 we will cover claim 1.

 we will not cover claim 2.

No other facts that can be expressed in the vocabulary are true. The first of these two additional facts is the

only answer to the query: we will cover which thing?55

6. Computation in InsurLE

In the same way that the semantics of InsurLE is inherited from the semantics of logic programming,

computation in InsurLE is inherited from computation in logic programming. Computation in InsureLE is

performed by first translating the given InsurLE facts, rules and query into a logic program and query, and

then employing a logic programming (LP) reasoner to search for answers to the query. In our experiments,

reasoning is performed by Prolog. But computation in InsurLE can also be performed by other logic

programming reasoners, such as s(CASP).56 The translators themselves are also implemented in Prolog.

In the Datalog family of LP languages, most implementations reason forwards (or bottom-up) from the

given facts, using rules to derive new facts, until enough facts have been derived to answer the query

directly. This way of reasoning mirrors the natural understanding of the definition of the intended

interpretation of logic programs: A new fact is derived as an instance of the conclusion of a rule, by

matching the positive conditions of the rule with existing facts and by showing that the negated conditions

of the rule match no existing facts. Stratification ensures that if a negated condition matches no existing

fact then it will not match any new facts in the future.

In contrast, in Prolog, reasoning proceeds in the opposite direction, backwards (or top-down) from a query

(or goal), reducing goals that unify57 with the conclusions of rules to subgoals that correspond to the

conditions of the rules. Positive subgoals are solved either by unifying them with facts or by unifying them

with the conclusions of the same or other rules, and reducing those subgoals to further subgoals, until all

subgoals are eventually solved by facts. Negative subgoals of the form it is not the case that p are solved by

negation as failure,58 showing that the negated goal (or query) p cannot be solved, using the same backward

reasoning, goal-reduction method.

55 However, if the negative condition ‘it is not the case that we will cover X’ is added to the second rule,
then the negative conditions would not be stratified, and there would be two interpretations. In both
interpretations ‘we will cover claim 1’ is true. But in one interpretation ‘we will cover claim 2’ is true, and
in the other interpretation ‘‘we will cover claim 2’ is false.
56 G. Sartor, J. Dávila, M. Billi, G. Contissa, G. Pisano and R. Kowalski, ‘Integration of Logical English
and s(CASP)’ (2022) Aachen : CEUR-WS.org Sun SITE Central Europe / RWTH Aachen University,
online at https://hdl.handle.net/11585/919580 [accessed 14 November 2024].
57 Unification takes two simple sentences and instantiates the variables, making the resulting two
instantiated sentences identical.
58 K. L. Clark, ‘Negation as Failure’ in: Gallaire, H., Minker, J. (eds) Logic and Databases. (Boston, MA,
Springer 1978). https://doi.org/10.1007/978-1-4684-3384-5_11 [accessed 14 November 2024].

https://hdl.handle.net/11585/919580
https://doi.org/10.1007/978-1-4684-3384-5_11

24

In the Answer Set Programming (ASP) variant of LP, negation need not be stratified, and reasoning does

not involve any query at all, but the reasoner generates all of the facts that are true in some interpretation,

as a consequence of the given rules and the facts.

The current implementation of InsureLE has two modes of execution, both of which reason with the Prolog

program into which the InsurLE rules have first been translated. The simplest mode of execution uses

Prolog itself to answer queries. The more elaborate mode uses a meta-reasoner59 written in Prolog.60 The

meta-reasoner also performs Prolog-style backward reasoning, but with added features, such as generating

conditional answers and generating explanations for answers. For example, consider the InsurLE rules in

Figure 4 and the following subset of the facts given in the previous scenario:

claim 1 is in respect of destroyed living room carpet.

claim 2 is in respect of warped and water-stained wooden kitchen worktop.

 warped and water-stained wooden kitchen worktop is caused by wear and tear or negligence.

 claim 1 is a cost.

 claim 2 is a cost.

 destroyed living room carpet is a damage.

 warped and water-stained wooden kitchen worktop is a damage.

Given the same query as before:

we will cover which cost?

the InsurLE reasoner generates the conditional answer:

 we will cover claim 1

 if destroyed living room carpet is caused by a burst pipe

 and it is not the case that

 destroyed living room carpet is caused by wear and tear or negligence.

The reasoning is performed by translating the InsurLE rules, facts and query into Prolog, and then using the

Prolog meta-reasoner to reason backwards from the query. The meta-reasoner unifies the query with the

conclusion of the first rule, and it proceeds to evaluate the positive conditions of the rule against the given

facts. The first three conditions have two answers, one where X is ‘claim 1’ and Y is ‘destroyed living

room carpet’, and the other where X is ‘claim 2’ and Y is ‘water-stained wooden kitchen worktop’.

59 S. Costantini, ‘Meta-reasoning: A survey’ in A. C. Kakas and F. Sabri (eds), Computational Logic: Logic
Programming and Beyond: Essays in Honour of Robert A. Kowalski, Part II (Springer, Berlin Heidelberg,
2002), 253.
60 Meta-reasoners are implemented in Prolog by using Prolog as a meta-language to define the reasoning
strategy of another logic. In the case of our meta-reasoner, the other logic and reasoning strategy are
Prolog-like. But for the sake of providing explanations and other useful features, the meta-reasoner records
details of proofs, which the Prolog reasoner discards or ignores.

25

In the case where X is ‘claim 1’, there are no facts that unify with the third and fourth positive conditions,

‘destroyed living room carpet is caused by a Z’ and ‘Z is a burst pipe’, which then become candidate

conditions for a conditional answer. It remains to evaluate the negative condition ‘it is not the case that we

will not cover claim 1’. This is done by negation as failure, reasoning backwards from the conclusion of the

second rule. In this case, the first three conditions of the second rule are evaluated to ‘true’. The fourth

condition does not unify with any facts or conclusions of rules, and this condition can also contribute to a

candidate condition of a conditional answer. Putting all the candidate conditions together, we obtain the

answer, which can be written in LE as:

 we will cover claim1

 if destroyed living room carpet is caused by a Z

and Z is a burst pipe

 and it is not the case that

 destroyed living room carpet is caused by wear and tear or negligence.

In the typed-variable syntax of InsurLE, the first two conditions are rewritten as the single condition

‘destroyed living room carpet is caused by a burst pipe’.

In the case where X is ‘claim 2’, all four conditions of the second rule evaluate to ‘true’, showing that the

conclusion:

 we will not cover claim 2.

holds. As a result, the negative condition of the first rule fails to hold and the conclusion ‘we will cover

claim 2’, fails to be another answer to the query.

Note that conditional answers relax the closed world assumption, by allowing for the possibility that some

instances of the conditions of an answer might be true, even if they are not currently known to be true.61

7. The Insuring Clause of a General Liability Insurance Product in InsurLE

As already mentioned, we have rewritten the wording of a general liability insurance contract (the Public

and Product Liability (PPL) Section from AXA Commercial in the UK) in InsurLE, and we have

experimented with using a meta-reasoner written in Prolog, to generate conditional answers to queries,

given incomplete scenarios. In this section, we present some examples of our experiment, using the

insuring clause of the PPL, and its associated exclusion and exemption. Figure 5 compares the original PPL

insuring clause with a representation of the insuring clause in InsureLE.

61 This approach to generating conditional answers is based on the approach in R. Kowalski, F. Toni and G.
Wetzel, ‘Executing suspended logic programs’ (1998) 34 Fundamenta Informaticae 203.

26

Figure 5. The PPL insuring clause in its original form and expressed in InsurLE.

Here, the relative pronoun ‘which’ in the relative clause ‘which you are legally liable to pay’ is potentially

ambiguous. In theory, it could refer to one of the nouns ‘amount’ or ‘damages’, or it could refer to the

entire noun phrase ‘any amount of damages’. However, in the built-in InsurLE ontology, ‘amount of

damages’ represents a single concept, which is a subtype of the type ‘cost’. This relationship between

subtype and type is represented by the built-in fact ‘amount of damages is a cost’. In the context of this

ontology, this occurrence of ‘which’ refers unambiguously to the variable ‘any amount of damages’ which

immediately precedes it, and not to ‘amount’ or ‘damages’.

As a general rule, the relative pronoun ‘which’ refers to a variable which immediately precedes it.

However, if ‘which’ is preceded by ‘and’, as in the case of ‘and which is in respect of a loss’, then there

must be a previous occurrence of ‘which’ in the same sentence, and the two occurrences of ‘which’ refer to

the same variable. In this case, they both refer to the same variable ‘any amount of damages’.

Notice that, compared with the original English wording ‘the amount of damages’, the InsurLE wording

‘any amount of damages’ uses the determiner ‘any’ rather than ‘the’, because ‘any’ introduces a variable,

whereas ‘the’ refers to a variable that has already been introduced.62

One of the distinguishing features of InsurLE, like that of its parent, LE, is that it incorporates only a

minimal knowledge of English grammar. In particular, the same predicate needs to be expressed in the

same way in all of its occurrences. This explains why ‘occurring’ is replaced by ‘occurs’ and ‘in connection

with’ is expanded into a full predicate ‘occurs in connection with’.

As a matter of detail, the current implementation shows how several occurrences of the same expression (in

this case ‘the loss is a’) can be ‘factored out’ of several similar conditions. Also, for the sake of uniformity,

‘nuisance or trespass’ has been rewritten as separate alternatives.

62 In natural language, a variable can be introduced by the definite determiner ‘the’ if the value of the
variable is a function of other variables in the sentence. We are exploring the inclusion of this feature in
future extensions of InsurLE.

27

On the one hand, the comparison in Figure 5 shows how close the logically precise, computable InsureLE

wording is to the original English wording. It shows, therefore, that, if the original English wording were

actually written in InsureLE, then the fidelity of the computable coding to the original wording would be

guaranteed simply by the fact that they are one and the same representation. On the other hand, it also

shows some of the subtle differences between the two representations.

An exclusion to a general liability insuring clause in InsurLE. The coverage expressed in the PPL

insuring clause has an exclusion for damage arising from the release or escape of pollutants, with an

exception (or exemption) if the damage is caused by a sudden incident. The full clause is shown in the left

column of Figure 6.

Figure 6. The exclusion and exemption of the PPL insuring clause in its original form and in InsurLE.

The full clause has two parts: The first part expresses the exclusion and exemption. The second part

(greyed out in Figure 6) ‘all property damage or nuisance or trespass will be considered as having occurred

at the time of the sudden incident’ is not a restrictive clause which modifies the meaning of the first part of

the clause. It is a non-restrictive clause, which adds an extra conclusion to the first part of the clause.

The second part is needed, to determine whether, in the case of a sudden incident, the condition ‘the loss

occurs during the period of insurance’ of the insuring clause applies. This can be represented simply in

InsurLE by the rule:

 a loss occurs during the period of insurance

 if the loss arises from an incident

 and the incident is a sudden incident

 and the incident occurs during the period of insurance.

For example, if destroyed living room carpet arises from a sudden spillage of oil, which occurs during the

period of insurance, then the destroyed living room carpet will be deemed to have also occurred during the

28

period of insurance, even if the damage to the carpet actually occurred after the period of insurance, as a

delayed reaction to the spillage.

The right column of Figure 6 shows the InsurLE representation of the actual exclusion and exemption. The

explicit use of the logical connective only if in InsurLE is more precise than the original English wording

‘only applies’. This greater precision helps to ensure that the resulting InsurLE representation is both

logically unambiguous and computable.

Notice also that to apply the InsurLE rule in Figure 6, it is necessary to determine whether a loss arises

from a ‘sudden incident’, when the incident occurs and where it occurs. These judgements will typically be

made by a loss adjuster, and either will be given as part of the input scenario, or will be generated as

conditions of a conditional answer.

The InsurLE representation in Figure 6 follows the lead of the original wording, using ‘only if’ as the

logical interpretation of ‘only applies’. However, InsurLE also provides the writer with the flexibility to

write the rule more explicitly as an exception to the coverage clause in Figure 5. The box on the right of

Figure 7 shows this option. The two ways of writing the rule are logically equivalent.

Figure 7. The exclusion and exemption of the PPL insuring clause as an only-if rule and as an extended if-

rule in InsurLE.

8. An Example Use Case of InsurLE

Figure 8 illustrates the use of InsureLE to provide a conditional answer to a query, given incomplete

information.63 It shows how the answer can include both explicit conditions and conditions embedded in

63 Note that, in order to obtain the answer in Figure 8, it is necessary to reason that ‘Bob’s broken thumb is
a loss’, using the input fact ‘Bob’s broken thumb is a bodily injury’, the built-in fact ‘bodily injury is a loss’
and the built-in rule: ‘X is a Y if X is a Z and Z is a Y’.

29

the answer as restrictive relative clauses. In this example, the distinction between the two kinds of

conditions mirrors the way in which the conditions are represented in the insuring clause itself.

Figure 8. A conditional answer to a query with incomplete input.

The Figure suggests a typical application in which a claims handler might be provided with incomplete

information about a claim, as in the box on the left in Figure 8. In the box on the right, the user inputs a

query, and the reasoner outputs a conditional answer, which identifies additional information that needs to

be provided for the claim to be successful. Additionally, a potential client could use the reasoner to obtain

general information about coverage without having to provide complete information about a hypothetical

scenario.

9. Conclusions and Further Work

In this paper, we presented the controlled natural language InsurLE, and we showed that it can serve

simultaneously both as the natural language expression of a contract and as its codified representation. We

argued that this combination of natural language and codified representation enables InsurLE to fulfil the

promise of computable contracts and to do so in a way that respects and complements existing insurance

industry practices.

In the first stage of our work, we translated the majority of the Public and Products Liability (PPL) wording

from an AXA Commercial product into LE, and we demonstrated our preliminary results to several

insurance professionals. Their feedback helped us to identify the extensions of the syntax of LE which we

have incorporated into InsurLE. These extensions include:

● a more natural treatment of typed variables,

30

● the use of restrictive relative clauses in the conclusions of rules,

● the hiding of unless the contrary conditions and

● the use of only if for expressing the combination of exclusions and exemptions.

Most of these extensions have been investigated before, but we found that their selection and combination

is particularly useful for representing wordings in the insurance domain. The first two of these extensions

are already features of many other CNLs, including Attempto Controlled English (ACE)64 65 66 and

PENG,67 which cover a much broader range of syntax than LE and InsurLE. In contrast, InsurLE aims to

provide a minimal syntax, which maximises naturalness and expressive power, but avoids the syntactic

complexities of traditional legalese. In particular, we have eliminated centre-embedded clauses, which have

been found to inhibit readers’ understanding and recall of legal texts to a greater degree than other features

of legal contracts.68

It remains to be seen whether, because of its minimal, but expressive syntax, InsurLE and its further

extensions might serve, not only as a CNL for insurance contracts, but also as a form of plain English,

which can be used to make legal texts more accessible to a wider range of readers with or without the

assistance of computers.

The third extension, hiding unless the contrary conditions, uses the approaches of Kowalski and Sadri69 and

of Satoh et al.70 to represent rules and exceptions in a form that is closer to their representation in natural

language and to their expression in insurance contract wordings.

The fourth extension, using ‘only if’ to express the combination of exclusions and exemptions, is possibly

the most original feature of InsurLE syntax, motivated by its frequent appearance in insurance contract

wordings.

In addition to developing the syntax of InsurLE, we also tested the direct use of Prolog as the InsurLE

reasoner. However, when we demonstrated the reasoner to our insurance colleagues, they observed that the

reasoner was not adequate for typical applications in handling claims, where the given information about a

64 N. E. Fuchs and R. Schwitter, ‘Attempto Controlled English (ACE)’ CLAW 96, The First International
Workshop on Controlled Language Applications Katholieke Universiteit Leuven 1996).
65 N. E. Fuchs, K. Kaljurand and T. Kuhn, ‘Attempto Controlled English for Knowledge Representation’
(2008) 5224 Reasoning Web. Lecture Notes in Computer Science 104.
https://doi.org/10.1007/978-3-540-85658-0_3 [accessed 14 November 2024].
66 N. E. Fuchs ‘Attempto project’, 2013 http://attempto.ifi.uze/ h.ch/sit [accessed 14 November 2024].
67 R. Schwitter, ‘English as a formal specification language’ in Proceedings: 13th International Workshop
on Database and Expert Systems Applications (IEEE, 2002).
68 Martínez et al. (n 17) 6.
69 R. Kowalski and F. Sadri, ‘Logic programs with exceptions’ (1991) 9 (3–4) New Generation Computing
387.
70 K. Satoh, K. Asai, T. Kogawa, M. Kubota, M. Nakamura, Y. Nishigai, K. Shirakawa and C. Takano
‘PROLEG: an implementation of the presupposed ultimate fact theory of Japanese civil code by PROLOG
technology’ in JSAI international symposium on artificial intelligence. (Springer, Berlin, Heidelberg,
2010).

https://doi.org/10.1007/978-3-540-85658-0_3
http://attempto.ifi.uzh.ch/site/
http://attempto.ifi.uzh.ch/site/
http://h.ch/sit

31

particular case is often incomplete. We responded to this feedback by implementing a translation of

InsurLE into s(CASP), and by using the s(CASP) reasoner to generate answers with missing information.71

However, we then discovered complications with the resulting need to generate names of hypothetical

individuals. This work is ongoing; and further improvements, such as the generation of conditional

answers, still need to be implemented and tested.

In theory, the reasoner could also be extended to help a drafter to comply with legal requirements,

including those imposed by regulators such as the UK Financial Conduct Authority (FCA). However, this

capability would require the use of a more powerful reasoner, such as the one developed by Trevor Bench–

Capon72 for aiding policy makers to formulate legislation with the aid of logical models.

We are exploring further extensions of InsurLE, to make it closer to current insurance writing practice,

while ensuring that it remains unambiguous and computable, and while avoiding syntactic features, such as

centre-embedding, which make traditional legal contracts unnecessarily complicated and difficult to

understand. Some of these extensions, such as rules with more than one conclusion, and rules and queries

with restrictive relative clauses, have already been mentioned. In all of these cases, the semantics and

computation of answers is obtained by translating the extensions into ordinary LP.

We also plan to extend our interactions with insurance professionals, to help ensure that the further

development of InsurLE is relevant for the needs of the insurance industry. In particular, we are

investigating which application areas are likely to be most useful.

One of the most pressing tasks for future work is to gain more practice with writing insurance contracts in

LE, and to develop computer aids to help with drafting and redrafting contracts. We are already using a VS

Code predictive text editor for LE, which needs to be extended for InsurLE. We are also exploring the use

of natural language processing tools, including large language models, to assist the process of translating

existing contract wordings into InsurLE.

Prior to writing this paper, our collaboration with the insurance industry had not included collaboration

with legal professionals working in the insurance industry. However, since submitting this paper, thanks to

the Editors of this Journal, it is clear that there are significant benefits to be obtained by working more

closely with insurance law professionals. These benefits include, but are not limited to, a more robust

judicial approach to contract interpretation, a more refined attention to multiple causation of losses, and

issues concerning 'facts' which are not obviously true or false. Moreover, we also have a much better

appreciation that the further development and acceptance of InsurLE would be accelerated with such

collaboration. We hope that such collaboration will also be of interest and benefit to the legal community as

well.

71 Sartor et al. (n 56) 5.
72 T. J. Bench-Capon, ‘Support for policy makers: formulating legislation with the aid of logical models’ in
Proceedings of the 1st international conference on Artificial intelligence and law (ACM 1987) online at
https://dl.acm.org/doi/pdf/10.1145/41735.41756 [accessed 14 November 2024].

https://dl.acm.org/doi/pdf/10.1145/41735.41756

